An S4 class to store the results of a damidBind differential analysis, as generated by `differential_binding()` or `differential_accessibility()`.
A generic plot method that creates a default visualisation (a volcano plot) for a `DamIDResults` object. For more advanced plotting options or different plot types, see the specific functions `plot_volcano()`, `plot_venn()`, and `analyse_go_terms()`.
Usage
# S4 method for class 'DamIDResults'
show(object)
analysisTable(object)
# S4 method for class 'DamIDResults'
analysisTable(object)
enrichedCond1(object)
# S4 method for class 'DamIDResults'
enrichedCond1(object)
enrichedCond2(object)
# S4 method for class 'DamIDResults'
enrichedCond2(object)
conditionNames(object)
# S4 method for class 'DamIDResults'
conditionNames(object)
# S4 method for class 'DamIDResults,missing'
plot(x, y, ...)
Value
`analysisTable(object)`: returns a data.frame with the full differential analysis.
`enrichedCond1(object)`: returns a data.frame of regions enriched in condition 1.
`enrichedCond2(object)`: returns a data.frame of regions enriched in condition 2.
`conditionNames(object)`: returns a named character vector mapping display names to internal condition identifiers.
Slots
analysis
A data.frame containing the full differential analysis table from limma or NOISeq.
upCond1
A data.frame of regions significantly enriched in condition 1.
upCond2
A data.frame of regions significantly enriched in condition 2.
cond
A named character vector mapping user-friendly display names to the internal condition identifiers used in the analysis.
data
A list containing the initial input data used for the analysis, including the occupancy data.frame and other metadata.
Accessor Functions
These functions provide a convenient way to access the different data slots of a `DamIDResults` object.
See also
[plot_volcano()], [plot_venn()], [analyse_go_terms()] for more powerful and specific plotting functions.
Examples
# Helper function to create a sample DamIDResults object for examples
.generate_accessor_example_results <- function() {
analysis_df <- data.frame(
logFC = c(2, -2), P.Value = c(0.01, 0.01),
row.names = c("chr1:1-100", "chr1:101-200")
)
new("DamIDResults",
analysis = analysis_df,
upCond1 = analysis_df[1, , drop = FALSE],
upCond2 = analysis_df[2, , drop = FALSE],
cond = c("Condition 1" = "C1", "Condition 2" = "C2"),
data = list(test_category = "bound")
)
}
dummy_results <- .generate_accessor_example_results()
# Extract the full analysis table
head(analysisTable(dummy_results))
#> logFC P.Value
#> chr1:1-100 2 0.01
#> chr1:101-200 -2 0.01
# Extract regions enriched in condition 1
head(enrichedCond1(dummy_results))
#> logFC P.Value
#> chr1:1-100 2 0.01
# Extract regions enriched in condition 2
head(enrichedCond2(dummy_results))
#> logFC P.Value
#> chr1:101-200 -2 0.01
# Get the condition names
conditionNames(dummy_results)
#> Condition 1 Condition 2
#> "C1" "C2"